# Shuttle Valve Design Team #17

Date October 22<sup>nd</sup>, 2013

#### **Group Members**

Ryan Laney – Team Leader

Billy Ernst – Team Webmaster

Samantha Zeidel – Team Treasurer

#### **Instructor**

Dr. Kamal Amin

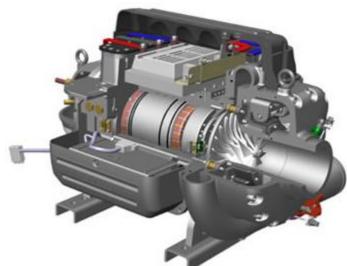
#### <u>Sponsor</u>

Verdicorp Inc. Robert Parsons



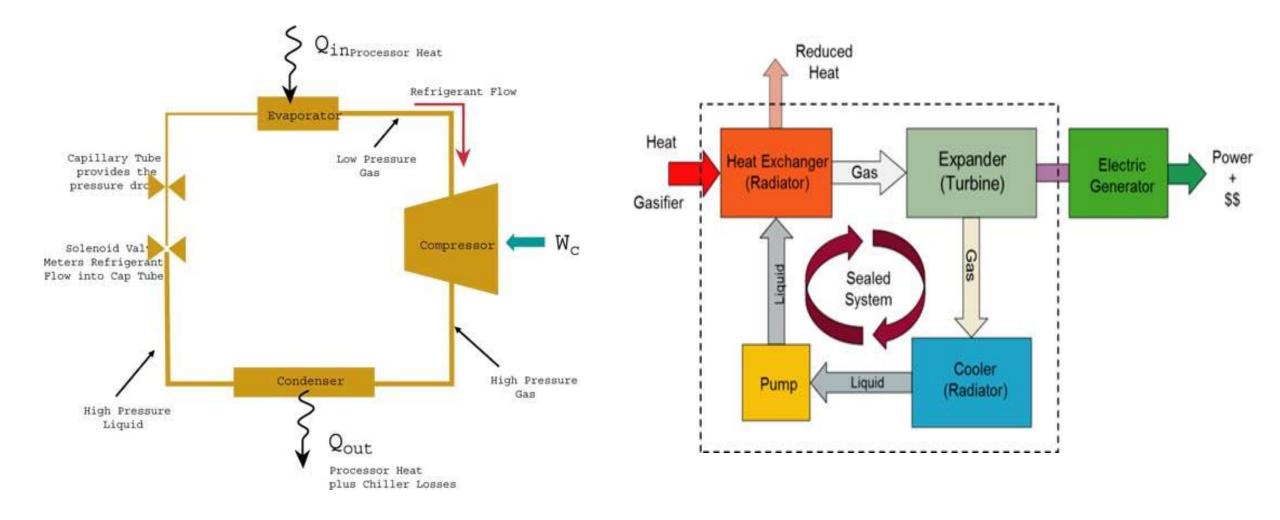





**Faculty Advisor** Dr. A. Krothapalli

### **Problem Statement**

- Verdicorp Environmental Technologies has developed a revolutionary Organic Rankine Cycle
- These systems are designed, built and manufactured here in Tallahassee, FL and distributed to clients worldwide
- The systems have somewhat low efficiency ( $\sim$ 10-14%) due to the low grade heat that fuels them
- There is a special concern within the company to maximize this efficiency in any way possible
- Senior Design Team 17 has been tasked with increasing the efficiency of the system by eliminating parasitic losses within


# **Project Scope**

- Organic Rankine Cycle uses waste heat from a low grade source and converts it to useful power
- Can be thought of as a refrigeration cycle in reverse
- Refrigerant 245fa is heated from waste heat and expanded in a turbo expander (turbine generator) to produce electricity
- Fluid is then condensed in a condenser and recirculated to the high temperature/pressure side via a pump
- The pump is a parasitic loss that lowers the overall efficiency of the system
- We must improve the efficiency of the Organic Rankine Cycle
- Decrease parasitic losses within the system (Pump  $\sim$  10kW)



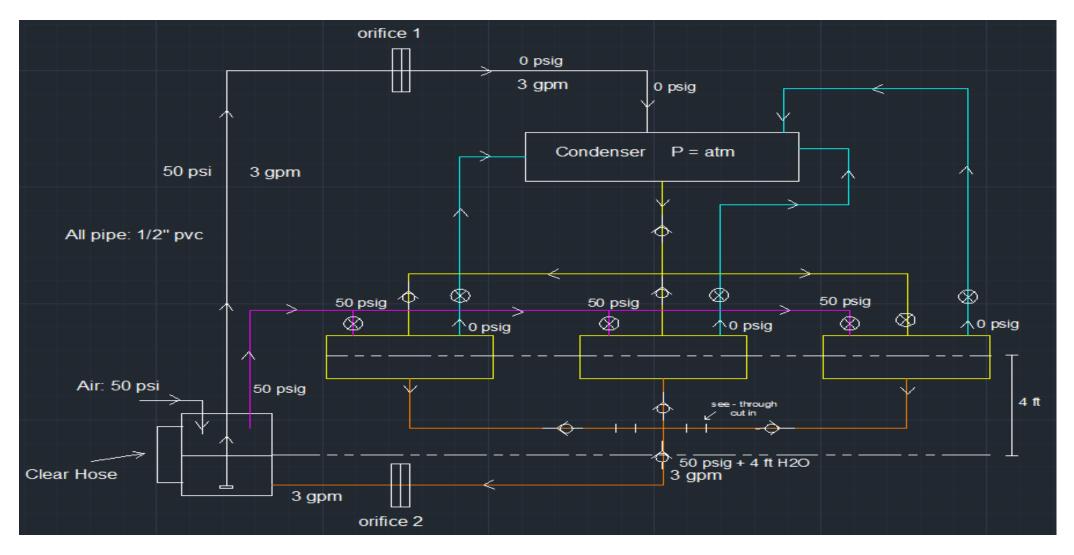


# **Refrigeration Cycle vs. ORC**



Presented by: Billy Ernst

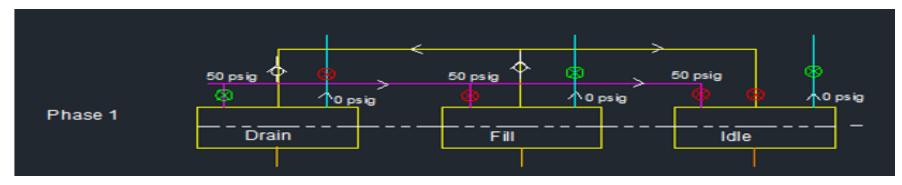
#### **Application of an ORC**



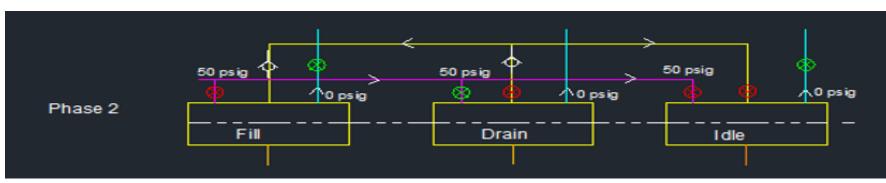

Presented by: Billy Ernst

# **Project Objectives**

- Design a shuttle valve system to replace the pump within the ORC
- Maintain the continuous flow of liquid within the ORC
- Use solenoid valves with the aid of gravity to adjust the pressure inside the vessels
- Transfer the liquid in the system from the low pressure side to the high pressure side
- Minimize the parasitic losses in the system (electrical consumption)
- Confirm on a final design concept by late-October 2013
- Construct a prototype of the final design during Spring 2014

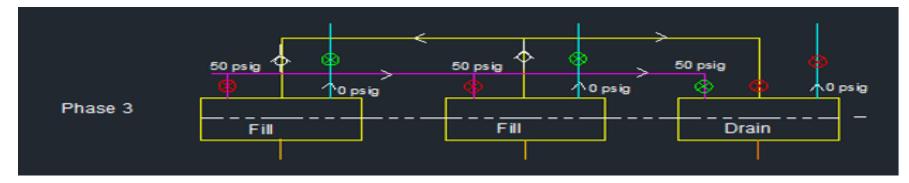

### **Design Concepts 1, 2, and 3 (Combined)**



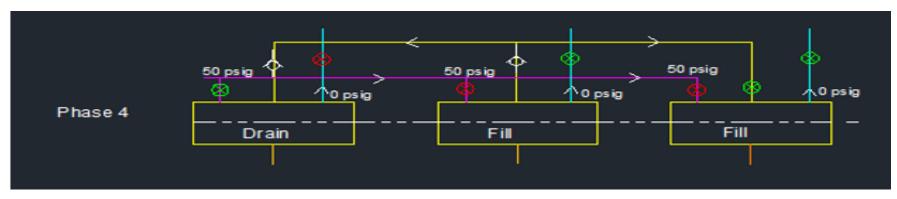

Presented by: Billy Ernst

### **Design Concepts 1, 2, and 3 (Combined)**

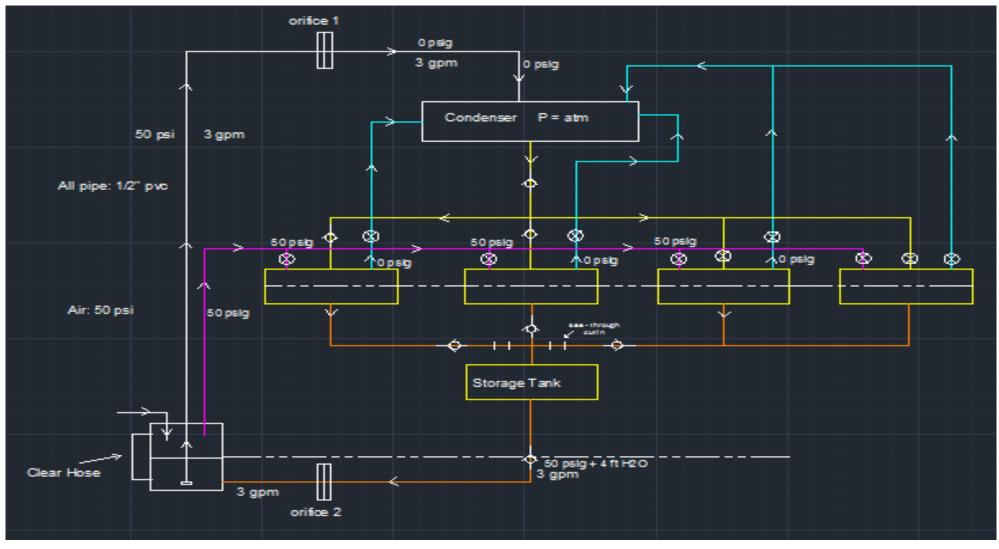
• Execution of Vessel 1




• Execution of Vessel 2




### **Design Concepts 1, 2, and 3 (Combined)**


• Reservoir Vessel Execution



• Reservoir Vessel Recovery



### **Design Concept 4**



### **Evaluation of Concepts**

- Design concepts 1, 2, and 3 (Combined):
  - Three very similar designs with small variations (sensor selection) generated individually by each team member
  - Combination of these designs into one design concept
  - Ideal design concept agreed upon by the team
  - Upon analysis, good chance to be final design selection
- Design concept 4:
  - Different overall design compared to the other three
  - Use of a storage tank to collect the liquid from the vessels
  - Exclusion of an emergency vessel and use of 4 continuous usage vessels
  - Extra materials and components to accomplish same goal as the other combined concept
  - Upon analysis, likely to be discarded

### **Potential Problems**

- Challenges:
  - Creating an entirely closed system
  - Finding a transparent material that can withstand pressure of 50 psi
  - Preventing reverse flow within the system
  - Selecting an appropriate air compressor to maintain the system
  - Selecting appropriate control valves: pneumatic, solenoid, mechanical
  - Damping the noise of the air compressor
- Risks:
  - High pressure risks (50 psi)
  - Refrigerant 245fa (actual system)
  - Explosion of pressurized vessels



Presented by: Samantha Zeidel

# **Project Plans**

- Simulation and analysis of final selected design
  - Calculations
  - Physical testing
  - Computational testing (PIPE-FLO, AutoCAD)
- Ordering of parts/components
  - All purchasing will be done through Verdicorp Inc.
  - AutoCAD breakdown of all components of the design
  - Obtaining the materials we will need to build our prototype
- Midterm 2 Presentations
  - Preparation project progress update and improvement of presentation skills
- Website Maintenance
  - Making our website aesthetically pleasing
  - Updating information

#### **Gantt Chart**

| Task Name                       | Start        | Finish       | October 11 |      |      |         |       | November 1 |      |       | Nov   | November 21 |      |      | December 11 |  |
|---------------------------------|--------------|--------------|------------|------|------|---------|-------|------------|------|-------|-------|-------------|------|------|-------------|--|
|                                 |              |              | 9/29       | 10/6 | 10/1 | 3 10/20 | 10/27 |            | 11/3 | 11/10 | 11/17 | 11/24       | 12/1 | 12/8 | 12/15       |  |
| Project Tasks Set 3             | Mon 10/7/13  | Tue 10/29/13 |            | -    |      |         |       |            |      |       |       |             |      |      |             |  |
| Midterm 1 Presenation (D4)      | Mon 10/7/13  | Tue 10/22/13 |            |      |      |         | _     |            |      |       |       |             |      |      |             |  |
| Midterm 1 Report (D5)           | Mon 10/7/13  | Fri 10/25/13 |            |      |      |         |       |            |      |       |       |             |      |      |             |  |
| Peer Evaluation 1 (D6)          | Tue 10/29/13 | Tue 10/29/13 |            |      |      |         | 🍾 10  | 29         |      |       |       |             |      |      |             |  |
| Project Tasks Set 4             | Mon 10/28/13 | Fri 12/13/13 |            |      |      |         |       |            |      |       |       |             |      |      | l           |  |
| Ordering of Parts               | Mon 10/28/13 | Fri 12/13/13 |            |      |      |         |       | :          |      |       |       |             |      |      |             |  |
| Simulation and Analysis         | Mon 10/28/13 | Fri 12/13/13 |            |      |      |         |       |            |      |       |       |             |      |      |             |  |
| □ Project Tasks Set 5           | Mon 10/28/13 | Tue 11/26/13 |            |      |      |         |       |            |      |       |       |             |      |      |             |  |
| Midterm 2 Presentation (D7)     | Mon 10/28/13 | Tue 11/12/13 |            |      |      |         |       | 1          |      |       |       | _           |      |      |             |  |
| Peer Evaluation 2 (D8)          | Tue 11/26/13 | Tue 11/26/13 |            |      |      |         |       |            |      |       |       | 11/26       |      |      |             |  |
| Project Tasks Set 6             | Tue 11/19/13 | Fri 12/6/13  |            |      |      |         |       |            |      |       | -     |             |      |      |             |  |
| Final Design Presentation (D10) | Tue 11/19/13 | Tue 12/3/13  |            |      |      |         |       |            |      |       | :     |             |      |      |             |  |
| Final Design Report (D11)       | Tue 11/19/13 | Fri 12/6/13  |            |      |      |         |       |            |      |       |       |             |      |      |             |  |
| ⊡ Website Maintanence           | Fri 10/18/13 | Tue 11/26/13 |            |      |      |         |       |            |      |       |       |             |      |      |             |  |
| Initial Web Page Design (D3)    | Fri 10/18/13 | Fri 10/18/13 |            |      |      | 10/18   |       |            |      |       |       |             |      |      |             |  |
| Final Web Page Design (D9)      | Tue 11/26/13 | Tue 11/26/13 |            |      |      |         |       |            |      |       |       | 11/26       |      |      |             |  |

Presented by: Samantha Zeidel

# **Project Summary**

- Analysis of the design concepts
  - Design Concepts 1, 2, and 3 (Combined): Currently the favored design
  - Design Concept 4: Currently the flawed design
- Project Progress: Great, On-schedule, Moving-forward
- Any Questions??



Presented by: Samantha Zeidel